
Analysis of Model Transformations via Alloy

Kyriakos Anastasakis1 and Behzad Bordbar1 and Jochen M. Küster2

1 School of Computer Science, University of Birmingham, Edgbaston, Birmingham,
UK

[K.Anastasakis,B.Bordbar]@cs.bham.ac.uk
2 IBM Zurich Research Laboratory, Säumerstr. 4, 8803 Rüschlikon, Switzerland

jku@zurich.ibm.com

Abstract. The concept of model transformations is central to the do-
main of Model Driven Engineering (MDE). A model transformation au-
tomates the translation of models between a source and a target lan-
guage. In order to reason about the correctness of the translation it is
important to be able to analyse model transformations. A model trans-
formation specification can be considered as a special kind of model and
as such it can be subject to existing model analysis techniques. In this
paper we present a systematic method of representing declarative model
transformations in a formalism called Alloy. We demonstrate how the
Alloy Analyzer can be used to conduct fully automated analysis of a
model transformation specification represented in Alloy. The presented
approach is explained with the help of an example model transformation
in business processes.

1 Introduction

The Model Driven Architecture (MDA) [1] aims at promoting the role of models
in the software development process. Typically, a model transformation is speci-
fied by a number of transformation rules, which define the mapping of constructs
of the metamodel of a source language into constructs of the metamodel of a tar-
get language. The metamodels of the source and target languages are specified
using a common meta language, the Meta Object Facility (MOF) [2]. A number
of languages have been proposed for the definition of the transformation rules(see
e. g. [3, 4]) and the Queries/Views/Transformations (QVT) [5] standard spec-
ifies the characteristics and capabilities model transformation languages should
have.

As model transformations can be considered as programs that translate mod-
els expressed in one modeling language into models expressed in another mod-
eling language, their quality becomes crucial for the success of model-driven
engineering and needs to be ensured by applying suitable validation and anal-
ysis techniques. In this paper, we propose the use of Alloy [6] as the formalism
used for the formal analysis of model transformations.

Alloy can be considered as a natural choice for the representation of model
transformations. It is a declarative language based on first-order logic [6] and

has strong foundations on relational logic. The idea of using relations for specify-
ing model transformations has already received some attention [7] and the QVT
standard [5] also contains a high-level relational language. As a consequence, us-
ing a relational approach such as Alloy for formal analysis seems to be promising.
Another incentive for using the Alloy language is the fact that it comes with a
tool, the Alloy Analyzer [8], which can be used to automatically analyse Alloy
models.

The remainder of the paper is structured as follows: First, we briefly introduce
key concepts of Alloy in Section 2. We then describe our approach of analysing
model transformations with Alloy and apply it to an example in Section 3. We
discuss limitations of our approach in Section 4 and end with a discussion of
related work and conclusions.

2 Alloy

Alloy [6] is a textual, declarative modelling language based on first-order rela-
tional logic. An Alloy model consists of Signatures, Relations, Facts and Pred-
icates. Signatures represent the entities of a system and Relations depict the
relations between such entities. Facts and Predicates specify constraints, which
apply on the Signatures and Relations.

Alloy comes with a tool, the Alloy Analyzer [8], which supports fully auto-
mated analysis of Alloy models. The analyser provides two main functionalities,
Simulation and Assertion checking. Simulation produces a random instance of
the model, which conforms to the specification. Assertions are constraints, which
the model needs to satisfy.

The Alloy Analyzer works by translating Alloy formulas to boolean expres-
sions, which are analysed by SAT solvers embedded within the analyser. A user-
specified scope on the model elements bounds the domain. If an instance that
violates an assertion is found within the scope, the assertion is not valid. How-
ever, if no instance is found, the assertion might be invalid in a larger scope. For
more details on the notion of scope, please refer to [6, Sect. 5].

3 Description of the Approach

Figure 1 depicts an outline of our approach, which is comprised of two steps. The
first step is to convert the MDA compliant model transformation specification
to an equivalent specification expressed in the Alloy language. The second step
is to use the Alloy Analyzer to analyse the produced Alloy model. These two
steps are explained in more detail in the following.

Step 1:Translate the Model Transformation Specification to Alloy.
A model transformation specification consists of a MOF compliant representa-
tion of the source metamodel, a MOF representation of the target metamodel
and the transformation rules, which define the mappings between the metamod-
els.

MOF

representation of

source metamodel

Specification of

Transformation

Rules (QVT)

Alloy

representation of

source metamodel

MOF

representation of

target metamodel

Alloy

representation of

target metamodel

Instance of mapping

between metamodel

elements

Random instance

of source

metamodel

OR

Counterexample

Instance of target

metamodel created

OR

Counterexample

MDA Compliant

Model

Transformation

Specification

Model

Transformation

Specification in

Alloy

Analysis in

Alloy

S

T

E

P

1

S

T

E

P

2

INPUT
 OUTPUT

<<ConformsTo>>
 <<ConformsTo>>

Mapping Relation +

Transformation Rules in Alloy

<<ConformsTo>>

T

r

a

n

s

l
a

t
e

T

r
a

n

s

l
a

t
e

T

r
a

n

s

l
a

t
e

Fig. 1. An outline of our approach

MOF metamodels are usually accompanied by constraints, which define syn-
tactic and semantic properties of the language. For example the UML stan-
dard specifies that an aggregation can only appear in binary associations [9,
p.110]. Such invariants are often referred to as well-formedness rules [9]. Well-
formedness rules are usually specified using the Object Constraint Language
(OCL) [10] and are considered to be part of the metamodel specification.

The first step of our approach requires that the metamodels of the source
and target language as well as the well-formedness rules of the source language
are translated to Alloy. This procedure can be automated and a methodology
has been developed [11] that translates MOF metamodels enriched with well-
formedness rules expressed in OCL, to Alloy. We have implemented this method
in a tool called UML2Alloy [11].

Additionally the transformation rules need to be converted to the Alloy lan-
guage. Transformation rules express under which circumstances, elements of the
source metamodel are mapped to elements of the target metamodel. The trans-
formation rules in Alloy are expressed in first-order logic. In order to keep track
which elements of the source metamodel are mapped to which elements of the
target metamodel, we also introduce a mapping relation in Alloy. The notion of
the mapping relation is similar to the notion of trace classes in the QVT speci-
fication [5].

Step 2: Analysis using the Alloy Analyzer. The procedure defined in
the previous step results in the production of an Alloy model of the model
transformation. The Alloy Analyzer can then be used to analyse the Alloy model
to detect flaws in the specification of the model transformation.

The analyser can be used to simulate the transformation. This results in
the production of a random instance of the source metamodel that conforms to
the well-formedness rules, an instance of the mapping that transforms elements
of the source model and the target model generated by the transformation. If

the analyser can not produce an instance of the transformation, there is an
inconsistency (i.e. conflicting statements) in the definition of the transformation
rules. It is relatively straight forward to resolve inconsistencies in Alloy models
using Alloy Analyzer. The tool provides an UnSat Core [12] functionality that
highlights the statements which lead to logical inconsistencies. This functionality
can be used to debug inconsistent model transformation specifications.

The Alloy Analyzer can also enumerate all possible instances that conform
to the specification of the transformation. As a result it is feasible to explore
the potential combinations of target models that can be generated by the given
transformation rules. This is useful to identify whether there are more than one
possible mappings between the elements of the source and target metamodels.

The Alloy Analyzer can also be used to check whether assertions, certain
statements that should hold according to the specification, are satisfied. As-
sertions can be formulated to check if the target model conforms to the well-
formedness rules of the target language. Assertions can also be used to check
whether a model generated by the transformation rules satisfies certain proper-
ties. If a property is not satisfied, the analyser presents a counterexample, which
is an instance of the target model that violates the property. The counterexample
can be inspected to deduce the flaw in the definition of the transformation. Sec-
tion 3.3 illustrates such a case in more detail. The next section briefly presents
an example to demonstrate our approach.

3.1 Running Example

We have applied our method to the transformation presented in [13] by Küster et
al. This transformation deals with a domain specific language used for business
process modelling, utilised by IBM’s WebSphere Business Modeler [14]. The
language is similar to UML Activity Diagrams [15].

The transformation [13] removes control actions (i.e. Decision, Fork, Join
and Merge nodes) and replaces them with implicit control actions expressed
with the help of pinsets. Figure 2 depicts two of the conceptual rules of this
transformation, called the Control Action to PinSet (CA2PinSet) transforma-
tion. For example rule r2 removes the join control node, adds a new pin in the
pinset of B and connects all edges incoming to the join, directly to the pins of B.
For an extended study of the details of this transformation please refer to [13].

A

B1

Bn

A
B1

Bn

Rule r1 (Fork found)

A1

An

B
A1

An

B

Rule r2 (Join found)

..

AAbstract node type:
Abstract pinset:

Abstract edge:

Fig. 2. Transformation rules of the CA2PinSet transformation [13]

Even though this transformation seems simple it can lead to the production
of target models, which are not well-formed, as Küster et al. have discovered [13]
and as our approach reveals. In the following section we demonstrate how our
approach can be applied to the rules depicted in Fig. 2.

3.2 Applying our Approach to the Example

As described in Sect. 3, the first step of our method is to translate the MOF
compliant metamodel of the source and target languages to Alloy. A simplified
version of the metamodel of the source language, adapted from [13], is depicted
in Fig. 3.

Fig. 3. A simplified metamodel, adapted from [13]

The language defines a number of ActivityNodes. Each ActivityNode can be
related to a number of incoming or outgoing ActivityEdges. An ActivityNode can
either be a ControlNode or an Action. A ControlNode can be in turn an InitialN-
ode, a FinalNode, a ForkNode or a Join. An Action can be either a CallAction, or
a BroadcastAction, or an AcceptAction. Finally an Action is related to a number
of Pins and each Pin belongs to one or more PinSets.

The source metamodel has embedded well-formedness rules. For example the
following rule in OCL expresses that an IntialNode has no incoming edges.

InitialNode.allInstances() -> forAll(i:InitialNode |
i.incoming -> size() =0)

The translation of the metamodel and the well-formedness rules to Alloy
is a straight forward procedure [11]. Classes are translated to Alloy signatures,
while association ends are transformed to Alloy fields. Additional multiplicity
facts are introduced in the Alloy model to reflect the multiplicity facts of the
association ends in the original MOF metamodel. Using UML2Alloy [11], which
implements these rules, we constructed an Alloy representation of the metamodel
of the source language. Figure 4 depicts an excerpt of the metamodel, with inline
comments. Next we need to transform the metamodel of the target language to
Alloy.

In the transformation, the target metamodel is the same as the source meta-
model, but without any ControlNodes, since all control nodes are represented

using PinSets. As a result the transformation of the target metamodel to Alloy
is similar to the transformation of the source metamodel to Alloy.

abstract sig ActivityEdge{ // Represents the ActivityEdge Class

target: one ActivityNode, // Represents the target association end

source: oneActivityNode } // Represents the source association end

//Multiplicity Facts

fact{

//The outgoing relation maps one ActivityNode to 0 or more ActivityEdges

outgoing in ActivityNode one -> set ActivityEdge

}

// Well-formedness Rules

fact{

// All Initial nodes have 0 incoming edges.

all i:InitialNode | #i.incoming = 0

}

Fig. 4. Portion of the transformed metamodel of the source language in Alloy

Our approach also requires that the transformation rules are expressed in
Alloy. Figure 5 depicts an excerpt of the Alloy representation of the transforma-
tion rule r2, which removes a Join node and replaces it with an implicit join [13].
The elements of Fig. 5, which start with a capital ‘T ’ represent elements of the
target metamodel. For example, InitialNode represents the InitialNode of the
source metamodel, while TInitialNode represents the InitialNode of the target
metamodel. This convention was necessary to avoid name conflicts in the model
(i.e. to distinguish which elements belong to the source metamodel and which
elements belong to the target metamodel).

Lines 1-4 in Fig. 5 represent the Mapping relations. Line 2 specifies that an
InitialNode of the source metamodel will be mapped to exactly one InitialNode
in the target metamodel. Line 3 states that an ActivityEdge will be mapped to
at most one ActivityEdge in the target metamodel (as shown by r2 in Fig. 2 the
outgoing ActivityEdge of a JoinNode does not map to any ActivityEdge after
the transformation). Lines 5-14 depict an excerpt of the rule defined in Alloy.
The comments provide an informal description of the rule in natural language.
The full Alloy model of the transformation with a detailed description can be
found in [16].

3.3 Analysis

To perform the analysis, the Alloy Analyzer was first used to simulate the
transformation presented in Fig. 2. The Analyzer requires the user to specify
a scope [6, Sect. 5] and then carries out the analysis by exhaustively searching
the state space for the given scope. In our analysis we set a scope of 2 Actions,

1 sig Mapping{

2 in2tin: InitialNode one -> one TInitialNode,

3 ae2tae: ActivityEdge one -> lone TActivityEdge

4 }

//For all ActivityEdges of the source model, if the ActivityEdge

//relates an OutputPin with a JoinNode and the outgoing edge of the

//JoinNode arrives in the InputPin of another Node there is *one*

//ActivityEdge in the target model, where: (a) the ActivityEdge

//of the source model is mapped to the ActivityEdge of the

//target model through the Mapping relation and (b) the target

//ActivityEdge arrives at the InputPin of the CallAction, where the

//outgoing edge of the JoinNode arrived in the source model.

5 pred ruleR2(){ all m:Mapping | all ae:ActivityEdge |

6 ae.source in OutputPin && ae.target in JoinNode => //OutputPin2Join

7 one tae:TActivityEdge | (ae.target.outgoing.target in InputPin =>

8 tae = m.ae2tae[ae] &&

9 tae.ttarget = m.ip2tip[ae.target.outgoing.target] &&

10 (

11 all ca:ae.target.pac |

12 ca in CallAction => (one tc:TCallAction |

13 tc = m.ca2tca[ca] && tc = tae.ttarget .tpac

14)))}

Fig. 5. An excerpt of the mapping relation and the transformation rules

2 CallActions, 4 Pins, 1 JoinNodes, 10 ActivityNodes and a default scope of 10.
This suggests that the analyser probes to find an instance that conforms to the
transformation rules for any combination of 2 Actions, 2 CallActions, 4 Pins, 1
JoinNodes, 10 ActivityNodes.

The Alloy Analyzer produced a random instance of a transformation where
a well formed target model was generated. However this does not mean that a
well-formed target model will be generated for every possible input model.

Assertions can be used to verify that a target model will always be well-
formed given the transformation rules. For example the well-formedness rules of
the language require that a FinalNode has only one incoming edge [13]. This can
be formulated with the following Alloy statement:

// All FinalNodes of the target metamodel have exactly one
// incoming edge
all tf:TargetFinalNode | #tf.incoming = 1

We checked this assertion using the same scope. This assertion produced a
counterexample, which is represented in Fig. 6. The left hand side depicts an
instance of the source model and the right hand side an instance of the target
model that violates the well-formedness rules. It can be easily observed that when
the JoinNode is removed, ActivityEdge 1 (AE1) and ActivityEdge 3 (AE3) are
both connected to the FinalNode and thus produce a syntactically incorrect

target model. In order to resolve this problem, the transformation rules need to
be augmented so that such a target model is not created.

Fig. 6. Instance which violates the well-formedness rules of the target

4 Discussion

The Alloy Analyzer conducts bounded analysis by using the scope to restrict the
state space. It is therefore expected that our approach will not scale well when
large metamodels and complex transformation rules are involved. However in
such cases, the method presented here might still be applicable. It is expected
that the properties, which need to be checked, are related to certain elements
of the metamodels and are affected by certain transformation rules. Therefore
it might be possible to abstract complex transformation rules by removing the
parts which are not related to the properties of interest.

A number of languages used for the definition of model transformations are
imperative [3] and hybrid [4] (i.e. provide support for both imperative and declar-
ative specifications). Alloy is a declarative language. As a result it is not possi-
ble to directly translate imperative model transformations to Alloy and analyse
them. It might be possible to abstract an imperative transformation to a declar-
ative one by removing the computational details of the transformation, which
are not of interest.

The Alloy language has a simple type system. The only primitive types sup-
ported are Integers. As a consequence it is not possible to use Alloy to analyse
properties involving certain types (i.e. String, Real numbers).

Models in Alloy are static, i.e. they capture the entities of a system, their re-
lationships and constrains about the system. An Alloy model defines an instance
of a system where the constraints are satisfied. More specifically, Alloy does not
have any built in notion of statemachine [6, Ap. B.5.1]. As a result our approach
can only be used to reason about static properties of the transformation. For
example it is not possible to reason whether applying a rule r1 before a rule r2 in
a model, will have the same effect as applying r2 before r1. It is however possible
to model dynamic systems in Alloy [6]. Extending our approach to reason about
dynamic properties of transformations remains for further research.

On the example transformation presented in this paper, we used Alloy to
check whether the transformation produces well-formed target models. Applying
our method to more case studies will provide us with more details on the range
of properties that can be analysed.

5 Related Work

One of the most popular methods of checking model transformations is by using
model based testing techniques. In particular Fleurey et al. [17] deduce meta-
model coverage criteria and automatically produce test models. Küster et al. [13]
suggest the use of a white box approach and propose three techniques for devel-
oping test cases. Baudry et al. [18] present various model transformation testing
approaches and demonstrate the challenges involved. Unlike those methods, our
approach does not require the construction of test cases. Instead the Alloy An-
alyzer exhaustively searches the state space for the given scope, in order to
validate certain properties.

Massoni et al. [19] use Alloy to validate certain properties on UML class
diagram refactorings [20]. Unlike their approach, our method is based on meta-
modelling and as a result it is not restricted to model refactorings.

Further approaches for verifying model transformations come from the do-
main of graph transformations: Baresi et al. [21] present a case study where
they use graph transformations theories to verify that their transformation is
semantic preserving. Graph transformation can also be used for verifying that a
model transformation is confluent and terminates (see e.g. [22, 23]). It remains
for future work to perform a detailed comparison of different approaches for the
formal analysis of model transformation properties.

6 Conclusion

Model transformations, like any other piece of software, can be inconsistent and
produce undesirable results under certain circumstances. Therefore the ability
to analyse model transformations is of paramount importance. In this paper we
demonstrated an approach of representing model transformations in Alloy and
illustrated some of the capabilities of the method with the help of an example.

References

1. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven
Architecture–Practice and Promise. The Addison-Wesley Object Technology Se-
ries. Addison-Wesley (2003)

2. OMG: MOF Core v. 2.0 Document Id: formal/06-01-01. http://www.omg.org.

3. Akehurst, D.H., Bordbar, B., Evans, M.J., Howells, W.G.J., McDonald-Maier,
K.D.: SiTra: Simple transformations in java. In Nierstrasz, O., Whittle, J., Harel,
D., Reggio, G., eds.: Model Driven Engineering Languages and Systems, 9th Inter-
national Conference, MoDELS 2006. Volume 4199 of Lecture Notes in Computer
Science., Genova, Italy, Springer (2006) 351–364

4. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Satellite Events at
the MoDELS 2005 Conference. Volume 3844 of LNCS., Springer (2006) 128–138

5. http://www.omg.org: MOF QVT final adopted specification Document
Id:ptc/2005-11-01. http://www.omg.org.

6. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, London, England (2006)

7. Akehurst, D.H., Kent, S., Patrascoiu, O.: A relational approach to defining and im-
plementing transformations between metamodels. Software and System Modeling
2(4) (2003) 215–239

8. Jackson, D.: Alloy Analyzer website http://alloy.mit.edu/.
9. OMG: UML Infrastructure Document: formal/05-07-05. http://www.omg.org.

10. OMG: OCL Version 2.0 Document id: formal/06-05-01. http://www.omg.org.
11. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A Challenging Model

Transformation. In Engels, G., Opdyke, B., Schmidt, D., Weil, F., eds.: ACM/IEEE
10th International Conference on Model Driven Engineering Languages and Sys-
tems. Volume 4735 of LNCS., Nashville, USA, Springer (2007) 436–450

12. Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M., Taghdiri, M.: Debugging
overconstrained declarative models using unsatisfiable cores. In: Proceedings of the
18th IEEE International Conference on Automated Software Engineering, Mon-
treal, Canada, IEEE Computer Society (2003) 94–105

13. Küster, J.M., Abd-El-Razik, M.: Validation of model transformations - first ex-
periences using a white box approach. In Kühne, T., ed.: MoDELS Workshops.
Volume 4364 of Lecture Notes in Computer Science., Springer (2006) 193–204

14. IBM: Websphere Business Modeller http://www-
306.ibm.com/software/integration/wbimodeler/.

15. OMG: UML: Superstructure. Version 2.0 Document id: formal/05-07-04.
http://www.omg.org.

16. Anastasakis, K., Bordbar, B.: Using Alloy for the Analysis of Model
Transformations: A Case Study. Technical report, School of Com-
puter Science, The University of Birmingham, UK (2007) (In Preperation).
http://www.cs.bham.ac.uk/∼kxa/files/analysis/techrep07.pdf.

17. Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: testing
model transformations. In: First International Workshop on Model, Design and
Validation. (2004) 29– 40

18. Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R., Ghosh, S.,
Fleurey, F., Le Traon, Y.: Model transformation testing challenges. In: ECMDA
workshop on Integration of Model Driven Development and Model Driven Testing.
(2006)

19. Massoni, T., Gheyi, R., Borba, P.: Formal Refactoring for UML Class Diagrams.
In: 19th Brazilian Symposium on Software Engineering (SBES), Uberlandia, Brazil
(2005) 152–167

20. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: improving
the design of existing code. Addison-Wesley, Boston, MA, USA (1999)

21. Baresi, L., Ehrig, K., Heckel, R.: Verification of model transformations: A case
study with BPEL. In: Second Symposium on Trustworthy Global Computing,
TGC’06. (2006)

22. Ehrig, H., Ehrig, K., Lara, J., Taentzer, G., Varró, D., Varró-Gyapay, S.: Termi-
nation Criteria for Model Transformation. In: FASE. (2005) 49–63

23. Küster, J.M.: Definition and validation of model transformations. Software and
Systems Modeling 5(3) (2006) 233–259

